Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 214(Pt B): 157-164, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37460039

RESUMO

Glutathione peroxidases (GPxs) are important antioxidant enzymes that act at distinct levels of the antioxidant defense. In vertebrates, there are several glutathione peroxidase (GPx) isoforms with different cellular and tissue distribution, but little is known about their interrelationships. The shrimp Litopenaeus vannamei is the main crustacean cultivated worldwide. It is affected by environmental stressors, including hypoxia and reoxygenation that cause reactive oxygen species accumulation. Thus, the antioxidant response modulation is key for shrimp resilience. Recently, several GPx isoforms genes were identified in the L. vannamei genome sequence, but their functions are just beginning to be studied. As in vertebrates, shrimp GPx isoforms can present differences in their antioxidant responses. Also, there could be interrelationships among the isoforms that may influence their responses. We evaluated shrimp GPx2 and GPx4 expressions during hypoxia, reoxygenation, and GPx4 knock-down using RNAi for silencing, as well as the enzymatic activity of total GPx and GPx4. Also, glutathione content in hepatopancreas was evaluated. GPx2 and GPx4 presented similar expression patterns during hypoxia and reoxygenation. Their expressions decreased during hypoxia and were reestablished in reoxygenation at 6 h in non-silenced shrimp. GPx2 expression was down-regulated by GPx4 knock-down, suggesting that GPx4 affects GPx2 expression. Total GPx activity changed in hypoxia and reoxygenation at 6 h but not at 12 h, while GPx4 activity was not affected by any stressor. The GSH/GSSG ratio in hepatopancreas indicated that at early hours, the redox status remains well-modulated but at 12 h it is impaired by hypoxia and reoxygenation.


Assuntos
Antioxidantes , Oxigênio , Animais , Antioxidantes/metabolismo , Oxigênio/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Glutationa , Isoformas de Proteínas
2.
Biochimie ; 199: 1-11, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35367576

RESUMO

Hypoxia (<2 mg O2/L) is one of the main environmental stressors that affects aquatic organisms, including the white shrimp (Litopenaeus vannamei). During hypoxia, reactive oxygen species (ROS) accumulation induces oxidative stress and damage to biomolecules. Redox state and ROS overproduction are modulated by the antioxidant system that is composed of several antioxidant enzymes, proteins, and other small compounds. Glutathione peroxidase 4 (GPx4) has emerged as an important antioxidant enzyme with cytoprotective roles. In vertebrates, antioxidant and pro-oxidant stress responses are regulated by several factors, including the p53 protein. However, little is known about GPx4 responses in crustaceans and the regulation by p53. Herein we analyzed and characterized the L. vannamei GPx4 and evaluated the responses to hypoxia and p53 knock-down. We found a unique GPx4 gene that produces five transcript variants (TVs) and only two protein isoforms with distinct cellular localization. GPx4 expression in hepatopancreas during hypoxia and p53 knock-down changed during short and long-term hypoxia, suggesting that GPx4 may be a sensitive indicator of antioxidant imbalance during stress. Knock-down of p53 induced a reduction in GPx4 expression, indicating that p53 modulates GPx4 responses during stress. This agrees with our findings of putative consensus sequences for p53 in the GPx4 gene promoter by in silico analysis. Also, the antioxidant response was effective in preventing major protein damage during hypoxia since no changes were detected in carbonylated proteins content in hepatopancreas during hypoxia. Conversely, p53 knock-down produced significant changes in carbonylated proteins.


Assuntos
Hepatopâncreas , Penaeidae , Animais , Antioxidantes/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Hepatopâncreas/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Penaeidae/genética , Penaeidae/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-33465469

RESUMO

Low oxygen concentration in water (hypoxia) and high temperature are becoming more frequent due to climate change, forcing animals to endure stress or decease. Hypoxia and high temperature stress can lead to reactive oxygen species (ROS) accumulation and oxidative damage to the organisms. The shrimp Litopenaeus vannamei is the most cultivated crustacean worldwide. The aim of this study was to evaluate the expression and enzymatic activity of glutathione peroxidase (GPx), catalase (CAT) and cytosolic manganese superoxide dismutase (cMnSOD) in gills and hepatopancreas from L. vannamei in response to two combined stressors: hypoxia and reoxygenation at control and high temperature (28 vs 35 °C, respectively). In addition, glutathione and hydrogen peroxide content were analyzed. The changes were mainly tissue-specific. In gills, cMnSOD expression and enzymatic activity increased in response to the interactions between oxygen variation and thermal stress, while GPx and CAT were maintained. More changes occurred in GPx, CAT and MnSOD in hepatopancreas than in gills, mainly due to the effect of the individual stress factors of thermal stress or oxygen variations. On the other hand, the redox state of glutathione indicated that during high temperature, changes in the GSH/GSSG ratio occurred due to the fluctuations of GSSG. Hydrogen peroxide concentration was not affected by thermal stress or oxygen variations in hepatopancreas, whereas in gills, it was not detected. Altogether, these results indicate a complex pattern of antioxidant response to hypoxia, reoxygenation, high temperature and their combinations.


Assuntos
Antioxidantes/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Hipóxia/metabolismo , Oxigênio/metabolismo , Penaeidae/fisiologia , Animais , Antioxidantes/química , Catalase/metabolismo , Brânquias/fisiologia , Glutationa Peroxidase/metabolismo , Hepatopâncreas/metabolismo , Homeostase , Temperatura Alta , Estresse Fisiológico , Superóxido Dismutase/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...